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1  Introduction 
 
If a homogeneous sphere rolls off on a tilted plane the distance between the center of 
gravity and the plane remains constant. The same phenomenon applies to revolving 
cylinders. There are other objects of this behavior, for example two-ellipse like discs 
which are cut out from cylinders (Fig. 1 left-hand side). The path of the center of gravity 
describes a straight line in all these examples. 

The next example consists of two – mathematically idealized infinitely thin – half- 
circle-discs, which are interlocked perpendicularly to each other at the original center 
(Figure 1, right-hand side). If this object rolls down a slightly tilted plane, the distance 
between the center of gravity and the plane remains constant. The path of the center of 
gravity is no longer a straight line but is more like a serpentine. Exactly regarded, this 
line is composed of circular arches, as it is shown later on. Because of this movement, 
such objects are called in English wobblers (from the verb: to wobble) 

According to this principle the Swiss artist Rolf Hergert [1] has created an object 
which he calls Go-On (Fig. 2). It is made of transparent LISA-plastics, which is often 
used in the decoration branch. Fluorescent molecules are incorporated in the plastics 
collecting the light and letting it emerge at the edges. 

Rolling down a plane, such a wobbler touches this always in two points. By connecting 
all corresponding bearing-surface points to each other a convex hull is obtained, also 
named connecting developable (Fig.3). The German artist Karsten Hein had such a 
wooden body protected for himself under the name Quirr (Fig.4). 

 
Fig. 1.  The centre of gravity S of two ellipse-like discs cut out from a revolving cylinder remains in a constant 
distance from the plane while rolling off on this plane. The same applies to two half-circle-discs interlocked 
perpendicularly. 
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Fig.2: The Swiss artist  Rolf Hergert 
has created a two-disc-roller named 
Go-On. It is exactly based on the 
principle that two semi-circles are 
interlocked perpendicularly one to 
another. 
(diameter discs  ~2.5cm)  

Fig. 3: By connecting all 
corresponding bearing-surface 
points of the wobbler to each other 
the so-called connecting 
developable are obtained. 

Fig.4: The German artist Karsten 
Hein has created an object called 
Quirr which is based on the 
principle described in Fig. 3 [2]. 
(size  ~8cm) 

 

One can take now a further step and wonder what 
will happen if two entire circular discs are 
interlocked perpendicularly to each other. This 
can be made practically very easily by cutting 
radial slits into the circular discs. The result is 
displayed in Figure 5. 

 
Using such a construction, – while the wobbler 
rolling off on a plane – , the distance between the 
center of gravity and the plane remains exactly 
constant, if the distance between the centers of 
the two circular discs fulfills the condition 
indicated in Figure 5. (for the mathematical 
derivation see later on) 

There are so-called beer-mats that are excellently 
suitable for self-construction of wobblers. They are 
easily available in some countries like Germany or 
Great Britain, mostly circular-like, sometimes also 
ellipse-like. They can be easily processed with a 
knife and some glue. Figure 6 shows an example 
with ellipse-like beer-mats. The authors forwarded 
this sample to the corresponding brewery in order to 
get some more mats. Not only obtained we several 
hundreds of items but furthermore two boxes of 
beer „to facilitate the science-work“. From which it 
can be seen that such an investigation „can be 
worthwhile“. 
 
 
 

 
 

Fig 5: Two entire circular discs interlocked 
perpendicularly one to another result in a further 
sort of wobblers. Also using ellipse-like discs, 
(half-axes a, b) wobblers can be constructed 
whose center of gravity distance from the rolling-
off plane remains constant. 

 
Fig. 6: A wobbler can be constructed  of 
ellipse-like beer-mats. 
(big ellipse axis ≈ 11cm) 
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The principle of rollers made of two entire circular discs is realized in miscellaneous 
toys. We mention here the Finnish children’s toy Ensihammas (Fig. 7)[3]. The shaking 
movement seems to fascinate children, too. 

Using two parts of a construction toy, called RONDI (Fig. 8), one can combine two 
discs immediately to a wobbler. The distance condition in Fig.5 is well fulfilled. We 
asked the construction enterprise [4] about this property. It resulted that it was a 
coincidence. 

While rolling off these two-disc-rollers always touch a plane exactly in two points, too. 
By connecting the contact-points of the roller to each other one obtains the connecting 
developable (see Fig. 11). This is a aesthetic looking body. The English artist Rick 
Flowerday [6] converted this idea to a small toy (Fig.9). Flowerday also published this 
kind of connecting developable [7]. In his publication he discusses among other things 
the question of the influence of a finitely thick disc concerning two rollers of two entire 
circular discs. Other yet unsolved problems, such as the volume and the surface of the 
connecting developable are discussed. 

 
  

Fig.7: The Finnish children’s toy 
Ensihammas is made of two thick 
circular discs. 
(diameter discs ≈ 6cm) 

Fig. 8: With the construction 
toy RONDI a two-disc-roller 
can be put together. 
(diameter discs ≈ 2.5cm) 

Fig. 9: The English artist Rick 
Flowerday took the connecting 
developable of a roller of two entire 
circular discs as a pattern for a 
wobbler. 
(diameter discs ≈ 3cm) 

 
 
2  Mathematical Derivation 

 
In a publication of the year 1966 the Two-Circle-Roller was treated for the first time, but 
only discussing the case of the circular discs [8]. In the following discussion a derivation 
is given generalized for ellipses. Further generalizations are possible [5].  

For the two congruent ellipse edges, being interlocked perpendicularly to each other, in 
a body-fixed, cartesian coordinate system of the two-disc-roller we choose a parameter 
estimation as follows (compare to Fig.: 10). 

(1) Ellipse 1: x a c y b z= ⋅ + = ⋅ =sin cosϕ ϕ
2

0 

(2) Ellipse 2: x a c y z b= ⋅ − = = ⋅sin cosψ ψ
2

0  . 
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Fig. 10: Sketch concerning the 
position of the ellipses and a 
suitable coordinate system. In 
the case of circles the 
parameters ϕ  and ψ   can be 
attached to angles at the 
circular centre points. 

 

 

 

a, b correspond to the half-axes, c is the distance between the ellipse centers. The ellipse 
1 lies on the x/y-plane, its center on the x-axis at +c/2, the ellipse 2 is situated on the x/z-
plane, is center on the x-axis at -c/2. Because of this position symmetry the center of 
gravity of the ellipse-combination (1) and (2) lies in the coordinate origin. 

A tangent t1 touching the ellipse 1 in the point T1(ϕ) can be represented as 

(3)         b x a y a b b c
⋅ ⋅ + ⋅ ⋅ = ⋅ +

⋅
⋅sin cos sinϕ ϕ ϕ

2
 

The axes sections of this tangent results from this to 

(4)   u a c v b u
a

= + =
⋅

⋅
sin

; tan
ϕ

ϕ
2

 

Likewise one can find the axes section of a tangent t2, touching the ellipse 2 in the point 
T2(ψ), and which goes through the axis section u: 

(5)   u a c w b u
a

= − =
⋅

⋅
sin

; tan
ψ

ψ
2

 . 

From this the coupling condition for ϕ and ψ  results in: 

(6)   a a c
sin sinψ ϕ

− =  . 

The tangents t1 and t2 lay with the two points T1 and T2 on a common tangential plane τ 
on to the both disc edges. This tangential plane is in the laboratory system, in which the 
rolling action of the two-disc-roller is observed, exactly the rolling-off plane. The shape 
of the axis section of τ can be written in general as 

(7)             τ :  x
u

y
v

z
w

+ + = 1 . 

With (4) and (5) the tangential plane can be described as follows: 

(8)   τ :   b x a y a z b u⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅cot cotϕ ψ  

The distance h of this plane τ from the origin of the coordinate system also represents 
the distance between the center of gravity and the tangential-(roll off)-plane τ : 

(9)   h bu
q

b a a= = + +mit    q 2 2 2 2 2cot cotϕ ψ  

ψ can be eliminated by means of the coupling condition (6) so that the following result 
is finally obtained: 
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(10) 22222 2sin2sin)2(    w)sin
2

( aacacbQith
Q

cabh ++−+=⋅+⋅= ϕϕϕ  

The distance h therefore depends in general on the parameter ϕ , and so it is not 
necessarily constant. The values a, b, c, are now --- as far as possible --- to be put in 
relation to each other in such way that h no longer depends on ϕ . For this it is necessary 
that the discriminant of the polynom Q being square in sinϕ  is eliminated which is 
exactly the case for  

(11)    c a b2 2 24 2= − .  

This results in  Q a b a= − +2 22 2
2

sinϕ   and it really follows for h the constant 

value 

(12)                h b=
2

. 

The condition (11) results necessarily in the relation a b≥ 2 , concerning the half-axes 
a, b of the ellipse edges of a two-disc-roller having a constant center of gravity distance 
from a flat bearing-surface area. a b= 2  is obtained for the limiting case c = 0. That is 
the case corresponding to Figure 1; in this case the disc edges are just the two sectional 
ellipses of two turning cylinders whose axes cut each other perpendicularly. 

By connecting the bearing-points of the two-disc-roller with straight line pieces one 
obtains the respective connecting developable (Fig.11). If the subsequent touching-
points are marked on a piece of paper (see Fig. 21) the connecting developable can be 
cut out and stuck together, which results in a very aesthetic body. Using (3) very 
illustrative thread models of the connecting developable can be made by connecting 
some bearing-points to each other, which are calculated according to (3), for example 
using a two-disc-roller made of thin wooden discs. 
 

 
 
 

 
 

Fig. 11: By connecting the respective bearing-points of the 
two-disc-roller to each other an aesthetically looking body, 
called ‘connecting developable’s by mathematicians, is 
obtained. 

Fig. 12: The so-called Oloid looks like the 
two-disc-roller in a confusing way; 
however, it has a completely different 
background.  

At first glance the Oloid (Fig. 12) is a completely identically looking body. Originally, it 
was found in a complicated way as the convex hull in the so-called upside-down-
turnable cube by Paul Schatz [9].  
 
It can be more easily constructed by employing the condition that the distance between 
the centers of the producing circular discs of the Oloid are exactly as long as the 
diameter of a circle. As this distance does not correspond to the condition (11) for a 
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constant center-of-gravity distance, the Oloid shakes there and back after being pushed 
slightly. Being pushed more strongly it rolls indeed fairly easily over a plane, the reason 
of which is that the center of gravity varies in hight only very little (for this 
c a b r= = =  is set in (10)). Using the figures (1), (2) of both disc-edges it can be 
shown that, concerning the Oloid ( c a b r= = = ) --- contrary to the two-disc-roller 
produced of general ellipses ( c a b2 2 24 2= − ) --- the connecting lines of the bearing 
points have always the same length ( = ⋅r 3 ). 

 
The Oloid is also used for technical applications. Special mixing-machines are 
constructed using such bodies [10]. 
 
 
 
3  Center of gravity path of the two-disc-roller 
 
Another problem is the obviously wavy-line-like path of the center of gravity of the two-
disc-roller by using a pair of congruent ellipses rolling off on a plane. In order to treat 
this question we make the following considerations: 
 
The sphere described around the origin by the radius h = b 2   
 

(13)                              Σ : x y z b2 2 2
2

2
+ + =  

 

 
 

 
 
 
 
Fig.13: The drawn-in sphere touches the plane 
while the two-disc-roller rolls off on the 
bearing-plane. We call it the touching sphere. 
 
 

touches each of the planes τ (7) in a specific point T( X , Y , Z ). That’s why the 
connecting developable of the two-disc-roller enclosed by the planes τ describe the 
sphere along a specific space curve l. 
 
Comparing the coefficients of the equivalent representations  
 

(14)                            τ :       X x Y y Z z b
⋅ + ⋅ + ⋅ =

2

2
 

 
with (8) result in the coordinates of T using (4) and (5) to 
 

(15)    X b
u

Y b
u

Z b
u

u a c a c
= = ⋅ = ⋅ = + = −

2 2 2

2 2 2 2 2
  ,      ,       with   cot cot

sin sin
ϕ ψ

ϕ ψ
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This is yet a parameter representation of the touching line l – by means of the coupling 
condition (6) selectively to write in ϕ or ψ . The elimination of  ϕ  and ψ in (15) shows 
that l takes a course on the two congruent elliptic cylinders according to 
 

(16)              
( ) )X c

a
Y
a

X

a
Z
a

c a b
+

+ =
−

+ = = −2 2 1 2 1 4 2
2

2

2

2

2

2

2

2
2 2   and   

( c
2    with    

 
Using (13) and (16) a coordinate representation of the touching line l is finally produced 
in the body-fixed system of the disc-pair. This results further in a curve to cut the sphere 
Σ with the hyperboloid paraboloid Λ : 
 

(17)              l :         Σ Λ :     ,     :  z     2x y z b c x y2 2 2
2

2

2
0+ + = ⋅ + − =  

 
The touching-line l is therefore an algebraic space curve of the 4th order. l is given as the 
cutting curve between the connecting developable and Λ likewise. According to the 
appearance one could call l a „tennis ball curve„ (Fig.14a,b). 
 
While the roller rolls off on a plane the sphere Σ rolls along this curve l on the support. 
The impression trace produced therewith of l on the plane is translationally congruent to 
the center of gravity path of the roller. The calculation of this trace --- at least 
numerically --- surpasses the frame of this work. Yet without calculation several 
qualitative assessments can be made about the center of gravity path.   
 
For 0 < < ∞c  --- according to (11) equivalent to a b> 2  --- one obtains the „tennis 
ball curve„ (Fig.14). The center of gravity path is then – based on the symmetry of l – a 
periodical, sinus-like curve, whose period an amplitude therefore depends on c, and the 
half-axes a and b of the ellipse-discs according to (11). 
 

 
 

 
Fig.14a, b: While the two-disc-
roller rolls off on a plane the 
touching curve rolls along a 
‘tennis ball curve’, here 
represented by the cutting curve 
between the touching sphere an a 
hyperbolic paraboloid. For the 
half-axes-relation of the ellipse-
discs  a = 0.72·b  has been 
chosen in this figure. Thus the 
central distance results in c ≈ 
0.27·b. 
 

For the limiting case of c → ∞  the hyperboloid paraboloid Λ in the body-fixed system 
degenerates to the y/z-plane (x = 0). l is then a circle described around the origin with 
the radius r b= 2  in the y/z-plane. This circle produces a straight line as trace while 
the sphere Σ rolls off on a plane. Thus the center of gravity trace approaches a straight 
line for ellipse-discs with a >> b. 
 
For c = 0, therefore a b= 2 , Λ degenerates to the pair of planes | y | = | z | which are 
perpendicular to each other. The space curve l thus disintegrates to a pair of congruent 
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circles (radius a) lying in this pair of planes around the origin (Fig.15). The center of 
gravity course is therefore made up of straight line pieces of the length πa. The center of 
gravity of a two-disc-roller of this kind would naturally follow a straight line after being 
pushed as a result of its inertia. Mathematically, also a curve produced with straight line 
pieces of the length πa being perpendicular to each other would be conceivable. 
 

 
 

 
 
Fig.15a, b: For the limiting case c = 0, that 
is to say that the ellipses centers fall 
together having the half axis-relation 
a b= 2  , the tennis ball curve 
degenerates to two great circles of the 
touching sphere being perpendicular to 
each other. 
 
 

 
4  The half-ellipse-roller 
 
Another two-disc-roller can be constructed following the principle of the ellipse-roller 
based on a pair of congruent half-ellipses (half-axes a, b) (Fig. 16). 
 

 
 

 
 
Fig.16: Two congruent half-ellipse-discs interlocked 
perpendicularly in a defined distance c have a 
constant center of gravity distance from the plane on 
which they lie. 
 

 
With regard to the half-ellipse-roller, of which the central distance c between the ellipse 
centers corresponds to the equation 
 
(18)                                 c a b2 2 22 2= −     with    a b≥  
 
The (geometrical) center of gravity retains  the constant distance h b= 2  from a plane, 
while rolling off on this, --- just like the ellipse roller ---. The mathematical derivation 
of the condition (18) be only outlined as follows; it is developed in an analogical way to 
the calculation in part 2. 
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Fig. 17: Representation of the half-ellipse-roller 
in a body-fixed cartesian coordinate system.  
 
 
 

The position and the parameter representation of the half-ellipses and their half-axes a 
and b in the body-fixed cartesian coordinate system is defined analogically to the 
ellipse-roller (‘Wobbler’) (Fig. 17); this construction’s center of gravity is thus situated 
in the coordinate origin. Contrary to the ellipse-roller it must be observed that the 
position of the half-ellipse 1 is chosen as follows: The half-ellipse 1 positioned in the 
x/y-plane (the ellipse’s center at x = +c/2) is opened in the direction oft the negative x-
axis, the half-ellipse 2 positioned in the x/z-plane (the ellipse’s center at x = −c/2) in the 
direction of the positive x-axis.  
 
The geometrical relation between both bearing points and the roll-off plane τ is 
represented as follows: One of the two discs (e.g. the half-ellipse 1) touches the plane in 
the point T1 always tangentially on the ellipse edge, that is to say the tangent t1 to the 
half-ellipse 1 in the point T1 lies in τ. The other bearing-point T2 is always one of both 
angles of the each other half-ellipse-disc (here the half-ellipse 2). By that the half-ellipse 
2 doesn’t touch the plane τ in the point T2 tangentially (Fig. 17). Now the straight line t1 
and the second bearing point T2 determine the bearing plane τ clearly. By means of an 
appropriate parametrization of the half-ellipse 1 as in (1) a representation of the plane τ 
can be found analogically to (8) and be obtained its distance h from the coordinate 
origin. The demand for the constancy of h, i.e. its independence of the parametrization 
of the half-ellipse 1 results necessarily in the relation (18) for the half-axes a, b and the 
central distance c. 
 
Contrary to the ellipse-roller the sign of the center distance c is essential in the 
mathematical construction for the geometrical shape of a half-ellipse-roller. This means 
that negative c are also permissible in the body-fixed cartesian coordinate system; thus 
the discs also can be shifted into each other to the center distance |c| (Fig.18). So one 
obtains particularly interesting two-disc-rollers, that show a rolling behavior different 
from that based on the roller for positive c (this can be best seen using models made of 
paperboard according to (18) as in Fig. 18).  
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Fig. 18a, b, c: The half-ellipse-roller for negative central distances c, here as the cases a b/ /= 8 7 , 
a b/ = 2 , (made of perfectly fitting elliptical beer-mug-stands), a/b = 3 (from the right to the left). 
 
The connecting developable of the half-ellipse-roller can be analytically described in the 
whole as compared to the ellipse-roller after an extensive elementary-geometrical 
assessment: They are composed of congruent pieces of rotary cone planes (Fig.3 for the 
case a = b, with (18) it follows then c = 0, Fig.19 for c = +a ). Therefore they can be 
unrolled in the plane as circular-disc-sectors set to each other (Fig.21). The particular 
case for half-circles (c = 0) results in congruent circular-disc-sectors in an unrolled 
shape set to each other with the opening angle Ψ = π 2 , thus about 127 3. o (Fig. 21) 
[11; new link 2017] 
 

 
 

 
Fig. 19a, b: The connecting 
developable of a half-
ellipse-roller is composed 
of pieces of rotary cone 
planes. 
 

 
The plane path of the geometrical center of gravity can be described ‘more easily’, too. 
The touching line l of the connecting developable (here pieces of a rotary cone) with the 
incorporated sphere Σ (radius h b= 2 , geometrical center in the center of gravity) is 
made of congruent circular arcs of the sphere Σ and has the same symmetry 
characteristics such as the ‘tennis ball curve’ with regard to the ellipse-roller. Thus the 
rolling-off of l into the plane delivers a wave-like center of gravity path which is 
composed of congruent circular arcs in almost all cases (Fig. 21).  

The curve described on a regular tennis ball (radius h = 3.2 cm) (the „tennis ball 
curve„) is similar to the touching-line l of a half ellipse-roller in an amazingly exact 
way. Extensive elementary geometrical evaluations show that in this case the half-axes-
relation is a b/ .≈ 1008  ,i.e. that nearly half-circles with the radius 
a b h cm≈ = ≈2 4 52.  are obtained as disc-edges (Fig. 20). According to (18) the 
relating - in this case negative –center distance results in c h a≈ − ≈0 25 0175. . . If such 
two half-circles are glued to a regular tennis ball resulting in a half-ellipse-roller 
including the center-of-gravity sphere  and the touching curve l (the tennis ball curve) 
as shown in Fig. 20, the tennis ball touches the bearing plane just along the tennis ball 
curve l while the two-disc-roller rolls off on this flat bearing plane. 
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In the end the paths of the two-disc-rollers 
projected on the plane, and made of half-circles 
or entire circles respectively including the 
corresponding touching lines of the rollers are 
represented. (Fig. 21). 

If one enlarges this drawing on a copy machine 
and cuts out the shape along the touching lines 
the connecting developable of the two-disc-
roller can joined from this by some manual 
skill, as it can be seen in Fig. 3 and 11. 

Although the curves look quite similar to each 
other the left-hand path can be easily calculated, 
while the right-hand path has not yet been 
quantitatively calculated by now [but see 12 and 
13]. That is only one of the problems being yet 
unsolved and which we find worthwhile to treat 
in the future. 
 
Coming up first from quite elementary set of 
questions interesting and profound 
connections of physical, mathematical and 
artistic considerations have resulted from that 
in this way. 
 
 

 
Fig. 20: The tennis ball-two-disc-roller of half-
ellipse-discs. 
 

 
Fig.21: The paths of the centers of gravity– including 
the rollers made of half-circles or of two entire circles 
respectively – rolled off on the bearing plane. 
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