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JUMPING TOYS: 
A TOPIC FOR INTERPLAY BETWEEN EXPERIMENT AND THEORY

4. September 2001/Udine/Italy 

Content:

1) Standing high jump demonstrated by 
the flea and man; presentation of the toy

2) Simple experiments and theory

3)  Higher level experiments and theory; 
modelling
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Ladies and Gentleman, dear colleagues,

I am going to talk about toys, especially about jumping toys – and animals. 
Probably all of you know this small toy. But to be sure, I will give 
everybody such a toy now. This is normally a dangerous idea during a talk 
because the members of the audience can play during the talk. But my idea 
is to give you information not only through hearing and seeing but also 
through feeling.

The English trade name for the toy is ‚Springy Smiley Face‘.

Everybody can take a sample or even two. There are about 200 toys.

Furthermore, I would like to change the subtitle from 'interplay between 
theory and experiment' to 'interplay between experiment and theory'. The 
experiment is for me the first and most important operation.

Here is the content of my talk. I hope to need not more than 35 minutes.
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jumping animals

© Zoological Institute in St. Petersburg/Russia

Probably all of you are familiar with this small animal, whether through 
your own experience or not.

This animated picture comes from the Russian Zoological Institute in St. 
Petersburg, which explores all properties of the fleas 
(http://www.zin.ru/Animalia/Siphonaptera/index.htm) 
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height of the jump  h ≈ 0.5m

acceleration distance  d ≈ 2mm

acceleration  a = h·g/d = 2500ms-2 

≈ 250g

(uniform acceleration assumed; 
g = 10ms-2 = acceleration of gravity)

Pulex irritans
(= human flea)
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jumping animals

man‘s acceleration ≤ 3g

A flea jumps up to a height of about h = 0.5 m. It accelerates across a 
distance of about d = 2 mm it. This leads to an acceleration of  a = h·g/d = 
0,5 m·g/0.002 m = 2500ms-2 = 250g (g = 10ms-2 = acceleration of gravity; 
uniform acceleration assumed). Since the jumping height of a flea is 
strongly influenced by air resistance and the acceleration is not uniform, it 
has, in reality, a greater initial acceleration. There are other animals with an 
even greater acceleration. Biologists have investigated very accurately the 
jumping mechanism of the flea. This is a topic which I cannot explain here.

The jumps of fleas and other animals are difficult to measure and not very 
reproducible.

This is a good reason for investigating a toy which gives better reproducible 
results.

A man can only achieve up to 3g with a standing high jump.
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ß purchasable items

simple
constructionà

jumping toys

ball pen

A small toy known as a jumping animal or pop-up makes some 
investigations easier and can illuminate the physics of jumping. The toy 
itself consists of a base, a spring, a suction cup and a head. You have to 
press the cup onto the base and thus load the spring. After some time the cup 
will loosen itself and the toy will jump up.

Here you can see several different shapes of the toy. I started my own 
investigations with the toy on the left. It was available in Germany one year 
ago but is out of production just now but will be available in a few months 
again. At the ‚Oktoberfest‘ in Munich I once got this strange item. The one 
on the right side is what you have in your hands.

You can build this toy easily by yourself. You need a compression spring 
with a length of about 6cm and a spring constant of about 500 Nm-1. In 
shops for household goods you can obtain simple suction cups with a hook, 
as used in bathrooms or kitchens. The hook must be removed.

The difference to the purchasable toy is that the base stays on the floor after 
the jump.

The use of appropiate ball pens is even simpler and gives almost the same 
properties. Probably many of you remember experiments like this with ball 
pens in the school..
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Which toy will achieve the greatest height? 

Which toy will start first?

What will happen if you remove the head? 

And what if you detach the spring from the base? 

Which height will the toy achieve jumping upside down?

Questions:

How much force do you need to compress the spring?

Which weight must be attached on to the head of the toy so that it will not 

jump at all? 

How much time will the starting process of the toy need? 

………………………………..

If children have several of these toys then a lot of questions arise: 

Which toy will achieve the greatest height? Which toy will start first?

Children will start soon to discover more properties: 

What will happen if you remove the head? And what, if you detach the base 
from the spring? Which height will the toy achieve jumping upside down?

And you can ask them questions: How much force do you need to compress 
the spring? The head will undergo an acceleration: When will the
acceleration be at its maximum? How much time will the starting process of 
the toy need? Which weight must be attached on the head of the toy so that 
it will not jump at all? What will happen if you attach the base to the 
ground?

And more questions ………
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Measured height of the jump  h = 1.2m (±10%)

=> Epot = mgh = 0.0145kg·10ms-2·1.2m = 0.17J

Compressing on a – kitchen - scale

F ≈ 19N (= 1.9kg; ±10%);   d ≈ 3.2cm (±10%)

Spring stiffness  c = F/d ≈ 590Nm-1

=> Espring = 0.5·c·d2 = 0.5·590Nm-1·0.0322m2 = 0.30J

((=> h = Espringr/mg = 2.1m))

jumping toy

Simple experiments and calculations:

I will now talk about experiments with this toy and not with the one you 
have because I made all experiments with this toy. 

You can do these experiments on your own with your toy with other 
parameters.

The first  simple experiment is to measure the jumping height and calculate 
the potential energy.

Another simple experiment is to compress the toy on to a – kitchen - scale 
and to measure the weight and the compression distance.

From that you can calculate the spring stiffness and the energy stored in the 
spring.

As you can see, there is a great difference, which I will explain later.

The spring stiffness of the toy you have in your hands is about 400Nm-1. 

The spring stiffness of the ball pen springs is about 200 to 300 Nm-1. 

These values are comparable to that one I have here.
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a = F/m1* – g ≈ 1900m/s2 = 190g

(m1* = head + suction cup + 1/3 spring = 0.00984kg;

g = 10m/s2 = acceleration of gravity)

the mass of the spring cannot be disregarded

jumping toy

Initial acceleration of the base  a = F/m3* – g ≈ 525g !!!

(m3* = base + 1/3 spring = 0.00369kg)

The asterisk always means that the mass of the spring has to be considered, but I am
going to omit it in future to avoid overloading the formulas

Initial acceleration of the head

On a very simple level it is possible to calculate with Newton's second law 
the initial acceleration of the head and, as you can see, it is remarkably high.

When you let the toy jump upside-down the acceleration of the base is even 
incredibly high.



8

8/21

Measured height of the jump  h = 0.3m (±20%)

Compressing on a – kitchen - scale

F ≈ 7.8N (= 0.78kg; ±10%);   d ≈ 1.5cm (±10%)

Spring stiffness  c = F/d ≈ 520Nm-1

jumping toy/Springy Smiley Face

Simple experiments and calculations:

Initial acceleration of the head

a = F/m1* – g ≈ 1700m/s2 = 170g

(m1* = head + suction cup + 1/3 spring = 0.00464kg)

Mass Head mHead = 4,510g
Mass Spring mSpring = 0,391g
Mass Base mBase = 1,174g

I add some experiments with that toy you have have in your hands. 

The first  simple experiment is to measure the jumping height.

Another simple experiment is to compress the toy on to a – kitchen - scale 
and to measure the weight and the compression distance.

From that you can calculate the spring stiffness.

The spring stiffness of the ball pen springs is about 200 to 300 Nm-1. 

These values are comparable to that one I have here.



9

9/21

111

1
1 308 −− −≈−≈






 −−= kmhms

c
gm

d
m
c

v

jumping toy

energyenergyenergy

kineticpotentialspring

v
m

c
gm

dgm
c
gmc

d
c 2

1
11

1

2
12

222
+






 −=






−

Maximum velocity of the head

m3

m1

m3m3

m1

y

m1·g/c

d

0

The spring is compressed, and at the time t0 = 0 the head starts with 
maximum acceleration. The time t1 is when the mass m1 (head + suction 
cup) achieves the position where the head is in the equilibrium situation. 
Equilibrium means the situation when the spring is not compressed and the 
head is in equilibrium with the spring. The time t2 characterizes the position 
of the end of the spring without m1; it is the equilibrium position of the 
spring without m1. 

The head will attain its maximum velocity v1 at the time t1. Conservation of 
energy leads to the following equation.

If you calculate the velocity the result is v1 = 8ms-1 or about  30 km/h. This 
is not a high velocity when you compare it with the high value of the 
acceleration.

The result is negative because the direction of the axis points downwards.
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Calculated height of the jump
(conservation of linear momentum)
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v3 = mean velocity of the whole toy after leaving the floor

To calculate the height of the jump you need the principle of conservation 
of momentum. t3 should be when the bottom mass m3 leaves the floor.

The head of the toy must pull the base (and partly the spring) when leaving 
the floor.

Thus you get the height. The result is realistic when compared with the 
measured height.

A common mistake here is to use the entire spring energy for calculating the 
height. This is not allowed because there are energy losses due to friction, 
and some energy is stored in the oscillation of the toy, as you will see later.

The height as a function of the head's mass m1 is a complicated, nonlinear 
function which has a maximum. It is interesting to see that the design of the 
toy is almost optimized with regard to the jumping height.



11

11/21jumping toy

Estimation of the time from start until achieving maximum velocity 
(≈ leaving the floor)

mss
a
s

t 2.80082.0
2

=≈=

(s = 0.032m; a = 95g; this is half of the initial acceleration;
uniform acceleration assumed)

You can also roughly estimate the starting time. 

This formula is only valid for uniform acceleration!

You need calculus to calculate the time exactly.

8 milliseconds is too fast to take a normal video of this process. The time 
between two (half) video pictures is 20ms (PAL system).



12

12/21

Video

2000 pictures/second
146 pictures = 73 ms

jumping toy

frames of a digital video with 1000 pictures per second

With the help of colleagues I made videos of the jump with a high-speed 
digital video camera, with 1000 and 2000 pictures per second . 

The figure above shows  some pictures taken from the video. 

At 0ms the toy starts; at 7ms the head of the toy reaches its maximum 
velocity and the base leaves the floor; at 9ms the spring is stretched to its 
maximum; at 16ms the spring is minimally stretched; at 23ms the spring is 
again maximally stretched. The pictures are not sharp because the higher the 
speed of the digital video camera, the worse the resolution.

The spring oscillates. This can not be observed with the naked eye because 
the oscillating frequency is about 70Hz.

The high speed video camera costs about 10000 US-Dollar. This is too 
expensive for a normal school.
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jumping toy

Position
Experimental results using
video data analysis programs
(DIVA, Coach V, etc.)
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By video analysis, the position of the toy’s head is extracted and shown in 
the upper figure. This seems to be like a badly drawn straight line. But it 
contains a lot of information. If you analyze this, you get the bottom figure. 
It shows the velocity as a function of time. The maximum velocity of the 
head is about 7ms-1. This is in reasonable agreement with the previously 
calculated value of  8ms-1.

Also you can see the oscillation time of the toy (0.0139s) here and calculate 
the frequency (72Hz).
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jumping toy
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In the upper figure the velocity of the head is shown again as a function of 
time. The bottom figure is derived from that and shows the acceleration. 
The data are smoothed because the double derivation leads to great
fluctuations. The measured initial acceleration of about 2000m/s2 (= 200g) 
is roughly equal to the calculated value of 190g. 

One has to be careful with smoothing. Especially the data near t = 0 are 
corrupted by this procedure.
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Mechanical energy is lost in the suction cup.

Several coils of the spring are compressed into 
the suction cup;
this part of the spring can decompress only with 
considerable friction.

Furthermore, there are unpredictable rotations and
somersaults which also need energy.

These losses are difficult to calculate quantitatively.

There is also a small fraction of the energy stored in 
the oscillation between head and base, which can be 
calculated.

jumping toy

The coils of the spring that are pressed into the top of the suction cup can 
only move with considerable friction. Furthermore, there are unpredictable 
rotations and somersaults around several axes which are hard to predict. 
These cost energy, thus reducing the height. These influences are almost 
impossible to measure quantitatively.
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Using calculus you can write down the differential equation for the starting 
process. This is the well-known equation for an oscillating mass hanging on 
a spring (harmonic oscillator), where damping is neglected:

The solution with the initial conditions                  and  y(0) = -d  is
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Another level is the use of calculus. First year physics students can do this.

You can write down the differential equation for the starting process. This is 
the well-known equation for an oscillating mass hanging on a spring 
(harmonic oscillator). Damping is disregarded here but can also be 
introduced.

By derivation you get the velocity and the acceleration.

If the base is  attached to the floor, this equation means that the head 
oscillates with the amplitude of  (d – m1g/c) and with the angular frequency 
of 1/2pi·sqrt(c/m1) = 39Hz. This is not the same oscillation frequency as 
previously calculated between head and base!
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jumping toy

you get the maximum velocity.)2.60062.0(
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The time is not the same as previously calculated, when uniform 
acceleration was assumed.

The velocity itself is – of course - exactly the same as previously 
calculated without using calculus.

From the equation for the velocity the time for the starting process and the 
maximum velocity of the toy can be deduced. 

The function has ist maximum for this expression where the sinus has ist 
maximum. 

The velocity is, of course, the same as previously calculated.
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Gerace/Dufresne/Leonard
Physics Teacher/Febr. 2001

This model assumes a 
damping force that is 
proportional to the relative 
velocity of the two 
springbok masses. This 
model does not attempt to 
take into account sliding 
friction. To obtain a "simple" 
expression for the time at 
which the springbok leaves 
the table, we assume that 
the damping coefficient is 
small.

The American scientists Gerace, Dufresne & Leonard have investigated 
even more accurately the problem of two masses connected by a spring. 
They call their design a springbok. They don‘t take into account the mass of 
the spring.

I do not expect that you can read or understand this. You can see that there 
can be involved much more mathematics.

Dufresne, R.J. et al.: Springbok: The Physics Jumping, The Physics Teacher 
39 (2001), 109-115.
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Modelling and Simulation with Interactive Physics

A completely another level is to model and simulate the toy on a computer.

There are several programs which allow the simulation of mechanical 
situations as, for example, the jumping toy. Here I have used the program 
‚Interactive Physics‘. It is possible to create and vary almost all parameters 
of the toy as masses of the head and the base with the spring constant 
including damping. 

It is interesting to see that the results of the simulation are quantitatively 
very similar to the real experiment, as you perhaps remember from the 
previously shown graphs.

The simulation is very informative because you can easily vary all the 
parameters.

You can model easily your toy with Interactive Physics (cost of the program 
about 200 USD)
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There are not many toys which have that 
many advantages :

1) Cheap
2) Interesting and motivating for children 
3) Simple and transparent design
4) Easy to build by yourself
5) Interdisciplinary reflections
6) Comparison experiment – theory
7) Modelling and Simulation
8) Different levels

But nothing is without disadvantage:

1) Certain danger
2) Not always available

At the end let me express that there are not many toys which have that many 
advantages.
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